Associate Professor
Director, MEL Program in Sustainable Process Engineering, Chair, Biotechnology Division of the Chemical Institute of Canada, Associate Editor, The Canadian Journal of Chemical Engineering
Office:
CHBE 207

Research Summary

Biocatalysis, Bioremediation, Bioprocess engineering, Drug delivery, Infectious disease pathogenesis & drug discovery, Green chemistry, Medical biotechnology, Metabolic engineering, Synthetic biology, Tissue engineering

Education

Harvard University, 2014, Postdoctoral Associate
Massachusetts Institute of Technology, 2013, Ph.D.
University of Waterloo, 2007, B.A.Sc.

Research interests + projects

The perfect storm created by global warming, the uncertain price and tight supply of crude oil, the increasing threat of epidemics, our declining stocks of life-saving medications and the wasteful manner in which drugs are manufactured has created an urgent need to develop and implement sustainable manufacturing technologies for the production of cleaner fuels and more efficacious pharmaceuticals. Of the alternatives that have been suggested, metabolic engineering appears strongly positioned to deliver the future of greener manufacturing. Manufacturing schemes based on metabolic engineering utilize renewable biomass-derived feedstocks, employ benign operating conditions, eliminate the use of hazardous reagents and solvents, replace stoichiometric reagents with biocatalytic cycles, and are the ultimate demonstration of reaction intensification. Moreover, our understanding of biological processes and our ability to precisely control the metabolic networks of microorganisms such as yeast and bacteria have witnessed phenomenal gains during the past two decades, and our repository of gene and protein data continues to grow. Aided by these developments, metabolic engineers can contemplate novel applications of life’s chemistries and synthesize molecules that are tailored to address unique needs.

My research group – the BioFoundry – utilises metabolic & enzyme engineering to investigate and customise novel biosynthetic enzymes that can convert biomass-derived feedstocks into better fuels, pharmaceuticals and value-added chemicals. We also extend these principles to the design and development of unique bioremediation strategies to rehabilitate the water quality in and around industrial zones. In addition to green engineering, the BioFoundry is also pursues medical biotechnology research, and we are working extensively on infectious disease drug discovery, drug delivery and tissue engineering. Our group actively collaborates with local start-ups, industry, academic groups and medical research laboratories, and our work is fostering innovation in a strategic domain for Canada.

Selected publications + presentations

J. C. H. Ho, S. V. Pawar, S. J. Hallam & V. G. Yadav, “An improved whole-cell biosensor for the discovery of lignin-transforming enzymes in functional metagenomic screens”, ACS Synthetic Biology, 7(2), 392-398 (2018)

S. K. Srivastava & V. G. Yadav, “Bionic manufacturing: Towards cyborg cells and sentient microbots”, Trends in Biotechnology, 36(5), 483-487 (2018)

M. Kabiri, S. H. Kamal, S. V. Pawar, S. Hatzikiriakos, U. Kumar, S. Hossain & V. G. Yadav, “A stimulus-responsive, nanoparticle-laden polymeric formulation for ocular drug delivery”, Drug Delivery & Translational Research, 8(3), 484-495 (2018)

D. Korvin & V. G. Yadav, “A molecular switch that enhances productivity of bioprocesses by bridging metabolic and macroscopic process control”, Molecular Systems Design & Engineering, 3, 550-559 (2018)

S. K. Srivastava, P. Piwek, S. Ayakar, A. Bonakdarpour, D. Wilkinson & V. G. Yadav, “A biogenic photovoltaic material”, Small, 14(26), 1800729 (2018)

S. Pawar, S. Hallam & V. G. Yadav, “Metagenomic discovery of a novel transaminase for valorization of monoaromatic compounds ”, RSC Advances, 8, 22490-22497 (2018)

S. V. Pawar, J. C. H. Ho, G. D. Yadav & V. G. Yadav, “The impending renaissance in discovery & development of natural products”, Current Topics in Medicinal Chemistry, 17(2), 251-267 (2017)

C. L. Bayly & V. G. Yadav, “Towards precision engineering of canonical polyketide synthase domains: Recent advances and future prospects”, Molecules, 22(2), 235 (2017)

J. Varela, F. Lammoglia, S. V. Pawar & V. G. Yadav, “Cheminformatic analysis of anti-malarial chemical space illuminates therapeutic mechanisms and offers strategies for therapy development”, advanced online publication, Journal of Chemical Information & Modeling, 57(9), 2119-2131 (2017)