Professor
Scientific Director, RES’EAU Centre for Mobilizing Innovation
Office:
CHBE 221

Research Summary

Drinking water quality, Advanced oxidation, UV based water treatment and purification, Ion exchange processes, Biological drinking water treatment, Electrochemical water treatment processes

Education

University of Toronto, 1998, Ph.D.
University of Toronto, 1994, M.A.Sc.
Amirkabir University of Technology, Iran, B.Sc.

Research interests + projects

Research in my laboratory focuses on water quality and the application of advanced water treatment processes to improve the quality of drinking water. In particular, I work on the development, evaluation, and implementation of advanced oxidation processes (AOPs), particularly UV-based AOPs, ion exchange, and electrochemical processes. Our research involves laboratory scale development and investigation, as well as pilot scale and field evaluation of the technologies under real operating conditions at several partner community sites. We aim to not only advance the science behind the water treatment technologies, but also offer communities and industries more efficient and cost-effective technologies to reduce pollution and protect human health and the environment.

Advanced Oxidation 

Advanced oxidation processes involve various combinations of ozone, hydrogen peroxide, ultraviolet (UV), and photocatalytic techniques that are capable of oxidizing a wide range of contaminants at moderate to high concentrations. My research interests are primarily on the development, design, and evaluation of UV based AOPs (i.e., UV-H2O2, Vacuum UV, or UV-photocatalysis) that are poised to replace conventional and often more expensive treatment technologies. This collaborative research aims to enhance the overall quality of drinking water, especially for small and rural communities. Specific objectives involve proper design and analysis of photoreactor configuration, UV or VUV irradiations, and operating parameters, all these being crucial for complete oxidation process and preventing the formation of harmful by-products. Also, we are focusing to understand of the effect water matrix constituents on treatment efficacy and also determine the effect of AOPs on finished water quality.

Ion Exchange 

Anionic Ion exchange (IEX) process is a feasible, robust, and effective technology for the removal of natural organic matter (NOM), nitrate, and certain group of micropollutants from surface water. With its excellent performance and simplicity of operation, IEX has been increasingly considered and implemented in water treatment plants of various sizes (municipal to small communities). The IEX research in my laboratory is investigating various resins in terms of key design and operational parameters including removal kinetics, long term operation, and resin regeneration efficacy as well as impact on the quality of finished water. Also, we are working on novel ion exchange reactors/contactors for greater removal of contaminants and more effective regeneration of the resins.

Electrochemical Water Treatment 

The electrochemical methods for water treatment exhibit several advantages over more conventional chemical approaches, particularly when applied to small drinking water systems. These include: a) no required chemical supply chain, transport or handling; b) robust systems with minimal service and simple operational requirements; c) compactness and small footprint; d) green technology with low carbon footprint; and e) on-site and on-demand operation with a feedback control system.

Our research in this area focuses on electrocoagulation technology for the removal of NOM from raw surface water, as well as electrochemical generation of ferrate, which is among the strongest oxidizing agents known. In electrocogulation, we are particularly working on scale up and pilot demonstration of the technology.

Scholarly and professional activities + affiliations

Selected publications + presentations

Borikar, D., M. Mohseni, S. Jasim (2014) “Evaluation and comparaison of conventional, and advanced oxidation processes for the removal of PPCPs and EDCs and their effect on THM-formation potentials” Ozone Science & Engineering (in press).

Bagheri, M., M. Mohseni (2014) “Computational fluid dynamics (CFD) modeling of VUV/UV photoreactors for water treatment” Chemical Eng. Journal 256: 51-60.

Kazemi, S., K. Fatih, M. Mohseni (2014) “Passive air breathing flat-plate microbial fuel cell operation” Journal of Chemical Technology and Biotechnology (in print). March 2014

Dubrawski, K.L., C. Du, M. Mohseni (2014). “General Potential-Current Model and Validation for Electrocoagulation” Electrochimica Acta, 129: 187-195.

Imoberdorf, G., M. Mohseni (2014) “Comparative Study of the Effect of Vacuum-UV Irradiation on Natural Organic Matter of Different Sources” Journal of Environmental Engineering 140(3): 04013016.